Nanoscale Optoelectronic Characterizations of Microstructured Thin-Film Solar Cells

Heayoung Yoon

Electrical and Computer Engineering

Thin film PV uses inexpensive materials.

- c-Si solar cell
- Thick (indirect band-gap)
- High purity (large L_{n, p})
- High efficiency, but expensive

- px-CdTe, CIGS, CZTS(Se)
 - Thin (direct band-gap)
 - Highly defective (grains, GBs)
 - Flexible (e.g., metal foil substrate)
 - Relatively high efficiency
 (→ can be improved more)

EQE (1 sun illumination) reflects J_{sc} .

CdTe solar cells fabricated by magnetron sputtering system*

η (%)	$V_{oc}(V)$	J_{sc} (mA / cm ²)	FF (%)	R_S (Ω cm ²)	$R_{SH} (\Omega \text{ cm}^2)$
13.2	0.801	23.5	70	3	1650
3.0	0.605	13.0	38	20	260

- CdTe absorber of 3 % device is highly resistive.
- EQE analysis shows carrier collection efficiency in each layer and interfaces.

The microstructure of CdTe is <u>not</u> homogeneous.

top view

cross section

- Comprised of grains (a few µm in size): lots of grain boundaries (GB)
- Local variation of chemical composition, defects
- Inhomogeneous (photo)current
- → impact of GBs on efficiency mainly unknown

Need for metrology to access properties of individual GB / GI (grain interior)

Techniques for Local PV Characterizations

✓ Local Probe

- Nanocontacts + nanoprobe
- Scanning probes
- Cathodoluminescence
- Photo-thermal induced resonance

Local Excitation

- Electron beam
- Near field optical source
- Ebeam + QD → photons (down-conversion)

- ✓ Sample prep: plan view / cross-section / wedge / lamella / nanocontacts
- ✓ Correlation with structural / compositional properties (TEM, EDX, EBSD, XRD)
- ✓ Modelling

*1. H. Yoon *et al.*, AIP Advances (6), 062112, 9 439 (2013)

Electron beams generate EHPs → EBIC

(1) I_{beam} → generation rate of EHP

 $(\# \text{ of EHPs}) \approx \frac{\text{(deposited e-beam energy)}}{3 \times \text{(energy band-gap)}}$

e.g. CdTe: E_G =1.5 eV, V_{beam} = 10 keV (BSE ≈30 %) ⇒ ≈1600 ehp

(2) V_{beam}→ generation bulb size

EBIC: Electron Beam Induced Current

EBIC is an ideal technique for systematic study of local carrier dynamics.

EBIC for Grain / Grain Boundary Characterizations

- Local carrier generation (bulb size: 110 nm to 1.5 µm in CdTe)
- Nano-contacts at grain boundary / grain bulk
- Probe PV properties of individual grains

Spatial resolution < 100 nm with low keV

- High keV increases signal-to-noise ratio, but lower the spatial resolution.
- Higher collection at grain boundaries

Carriers are collected efficiently at GBs in CdTe.

- Smooth surface was prepared by FIB.
- Grain boundaries in CdTe collects carriers more effectively than grain interiors.

Summary

- Physics of thin film PV is important and exciting.
- ✓ EBIC allows qualitative AND quantitative characterization of PV materials
 - Deconvolution of EBIC signal provides material parameters
 - Surface effects in EBIC are strong at the depletion region (and GB?)
- ✓ In progress: correlating local properties to overall device performance (electrical, optical, chemical, structural properties)

Acknowledgement

Paul Haney (NIST)

Nikolai Zhitenev (NIST)

Yohan Yoon (NRL)

(U of Utah)

David Magginetti Erfan Pourshaban Prakash Koirala (U of Utah)

Robert Collins (U of Toledo) (U of Toledo)

Research participants / collaborators

- CdTe solar cell (U. Toledo)
- CIGS solar cell (U. Toledo)
- CZTS solar cell (DuPont)
- Si solar cells: epi Si, high-efficiency PV (NREL)

Thank you for your attention!